Core i7-3770K v nové metodice: vyplatí se příplatek oproti i5?

0

Kastace Ivy Bridge 

Core i7-3770K se od 3570K liší vcelku kosmeticky. Intel mu dává do vínku nominálně o jeden krok vyšší násobič, k dispozici má plných 8 (namísto 6) MB L3 cache a především i7 není ochuzen o HyperThreading. Jeho čtyři fyzická jádra tak dokáží zpracovat až osm procesových vláken současně a systému se tak Core i7 jeví jako osm logických procesorů. Samotný HyperThreading by měl podle předešlých testů přinášet kolem 30 % výkonu navíc tam, kde je aplikace skutečně mnohovláknová. Naopak víme, že existují programy – typicky třeba některé hry, ale nejen ty – pro něž je lepší HyperThreading buď vypnout, nebo alespoň důsledně nastavit afinitu (přidělit daný proces jen třeba jednomu či dvěma jádrům).

Core i7-3770K jsme na EHW samozřejmě už testovali při jeho uvedení loni na jaře. To ale bylo těsně před velkou změnou skladby testů a také jste nemohli porovnat s AMD FX-8350, který je přece jen citelně lepší než FX-8150. 

Uvedení Ivy Bridge pro Intel znamená krok jménem Tick. Ten se vyznačuje vylepšením už existující architektury a přechodem na novější výrobní proces. Nové funkce se takřka nepřidávájí, v tomto případě jde tedy o jakýsi vypilovaný Sandy Bridge.


Přechod z 32- na 22nm výrobní proces znamenal nejen možnost dostat na menší plochu ještě více tranzistorů, ale také snížení TDP. Dramatické zmenšení plochy čipu však nemá na svědomí jen jemnější výrobní technologie, ale také nové uspořádání tranzistorů. Více se o něm můžete dočíst v přejatých materiálech od Intelu (Technologický průlom Intelu: první 22nm 3D tranzistory s označením Tri-Gate), zde si jej připomeneme jen stručně.

Vlevo vidíte běžné uspořádání, vpravo pak Tri-Gate. Zdroj: Intel

Nové uspořádání tranzistoru trochu připomíná přechod ke kolmém zápisu u pevných disků, obrázek nad tímto odstavcem to dobře ilustruje. Snadno si už asi dokážete představit řetězení ploutví a z toho vyplývající mnohem vyšší efektivitu takovéhoto designu. Intel tvrdí, že vývoj Tri-Gate u něj začal někdy v roce 2002, já si vzpomínám na trochu nověji datovaný (2007) objev jisté japonské společnosti (Tranzistory pro 20 až 50 GHz). O tranzistorech Tri-Gate vám hezky popovídá přímo pán z Intelu, video je českým zastoupením této společnosti otitulkováno naší mateřštinou.

Ivy Bridge přináší i několik dalších vylepšení konceptu Sandy Bridge, o některých se ale dočtete v předposlední kapitole s výzkumem rozdílu výkonu těchto generací při stejné frekvenci, o dalších pak v samostatném článku věnovaném GPU části Ivy Bridge.

Jak Core i5, tak Core i7 s odemčeným násobičem mají integrovánu v současnosti nejvýkonnější grafiku Intelu – HD 4000. Na „rentgenovém“ pohledu na jádro IB vidíte, že tato, v tak silném desktopovém procesoru nejspíše často kvůli přítomnosti výkonné diskrétní grafiky vypnutá, část si ukrajuje z celkové plochy opravdu hodně.

Intel uvádí, že v mnoha výkonnostních ohledech je vyšší z obou grafických řad v Ivy Bridge (tedy HD 4000) až dvakrát rychlejší než byla HD 3000 v Sandy Bridge. HD 2500 má být pak asi o 10–20 % výkonnější než HD 2000. Novinkou grafik v IB nebyl jen vyšší výkon v 3D hrách a benchmarcích nebo převodech videa (Quick Sync), ale také podpora zobrazení pro tři nezávislé výstupy na monitor. Prováděcí jednotky pak ve svých 3D schopnostech pokročily o jednu generaci. Nyní můžete počítat s plnou podporou API DirectX 11 a vším, co k němu patří (teselace, compute shading). Intel HD 4000 a 2500 zvládá také OpenGL 3.1 a GPGPU OpenCL 1.1.

Šestnáct oproti dvanácti prováděcím jednotkám a jen o trochu vyšší max. frekvence ještě nevysvětluje skoro dvojnásobný výkon HD 4000 oproti HD 3000. EU HD 4000 však zvládají dual-issue, konkrétně provést 2× MAD (Multiply-Add) za takt. Změn je ještě více, z těch signifikatních pak některé spojené s podporou DirectX 11 (hull shader, vyhrazená jednotka (teselátor), změna práce s pamětí, rychlejší geometrie, zrychlení výpočtů se Z atd.). Hardware HD 4000 a 2500 by měl být také schopen kvalitnější anizotropní filtrace. Jak je to s výkonnostními poměry v praxi, to dobře vidíte v posledním srovnání integrovaných a levných grafik.

 

Zopakujme si, jak Intel škáluje procesory a co odlišuje jednotlivé třídy Core, Pentia a Celerony v rámci platformy LGA 1155 (socket H2):

  • Core i7 – 8 MB L3 cache, 4 jádra/8 vláken (HyperThreading), SSE4.1/4.2, AVX, AES-NI, Turbo Boost
  • Core i5 – 6 MB L3 cache, 4 jádra/4 vlákna, SSE4.1/4.2, AVX, AES-NI, Turbo Boost
  • Core i3 – 3 MB L3 cache, 2 jádra/4 vláken (HyperThreading), SSE4.1/4.2, AVX
  • Pentium – 3 MB L3 cache, 2 jádra/2 vlákna, SSE4.1/4.2
  • Celeron – 2 MB L3 cache, 2 jádra/2 vlákna, SSE4.1/4.2 

Intel na to poskytuje i vcelku přehlednou tabulku:

Turbo Boost v Ivy Bridge (které jej podporují) umožňuje navýšení frekvence až o 400 MHz (čtyři kroky násobiče). Výrobci základních desek občas umožňují (nebo dokonce mají v automatickém nastavení) Turbo Boost pro všechna jádra na tomto maximu (tedy +4×), výchozí a mnou ponechané nastavení v případě Gigabyte Z77X-UD5H vidíte na následujících obrázcích z UEFI:

   

Parametry procesorů ve srovnání

Výrobce  Intel  Intel  Intel  Intel  Intel 
Řada  Pentium  Core i3 Core i5 Core i7 Core i7 
Model  G860 3220 3570K 3770K 3820
Frekvence  3,0 GHz 3,2 GHz  3,4 GHz  3,5 GHz 3,6 GHz 
Turbo  –  3,8 GHz  3,9 GHz 3,9 GHz 
Počet jader  2 2 4 4 4
Počet vláken 2 4 4 8 8
Kódové označení  Sandy Bridge  Ivy Bridge Ivy Bridge Ivy Bridge Sandy Bridge-E 
L1 cache  2× 64 kB  4× 64 kB  4× 64 kB  4× 64 kB  4× 64 kB 
L2 cache  2× 256 kB  4× 256 kB  4× 256 kB  4× 256 kB  4× 256 kB 
L3 cache  3072 kB  3072 kB  6144 kB  8192 kB  10 240 kB 
Paměti DDR3-1333 DDR3-1600 DDR3-1600 DDR3-1600 DDR3-1600
Paměťových kanálů 2 2 2 2 4
Max. kapacita RAM 32 GB 32 GB 32 GB 32 GB 64 GB
Sběrnice 5 GT/s (DMI) 5 GT/s (DMI) 5 GT/s (DMI) 5 GT/s (DMI) 5 GT/s (DMI)
BCLK 100 MHz 100 MHz 100 MHz 100 MHz 100 MHz
Násobič  30 34 34 35 36
Výrobní proces  32 nm high-k  22 nm high-k  22 nm high-k  22 nm high-k  32 nm high-k 
Velikost jádra  131 mm2  160 mm2  160 mm2  160 mm2  294 mm2 
Počet tranzistorů  504 milionů  1,4 mld. 1,4 mld. 1,4 mld. 1,27 mld.
TDP  65 W  55 W 77 W 77 W 95 W 
Instrukční sady SSE4.1/4.2 SSE4.1/4.2, AVX SSE4.1/4.2, AES-NI, AVX SSE4.1/4.2, AES-NI, AVX SSE4.1/4.2, AES-NI, AVX
Virtualizace VT-x VT-x VT-x VT-x VT-x, VT-d
Integrovaná grafika HD HD 2500 HD 4000 HD 4000
PCI Express 2.0, 16× 2.0, 16× 3.0, 16× 3.0, 16× 2.0, 40×
Patice  1155 1155 1155 1155 2011
Výrobce  AMD  AMD  AMD  AMD  AMD 
Řada  Phenom II X4  A10 FX  FX  FX 
Model  965 BE  5800K 6100 8120 8350
Frekvence  3,4 GHz  3,8 GHz  3,3  GHz  3,1 GHz  4,0 GHz
Turbo  –  4,2 GHz 3,6–3,9  GHz  3,4–4,0  GHz  4,1– 4,2 GHz
Počet jader  4 4 6 8 8
Počet vláken 4 4 6 8 8
Kódové označení  Deneb  Trinity Zambezi  Zambezi  Vishera
L1 cache  4× 128 kB  4× 16 + 2× 64 kB  6× 16 + 3× 64 kB  8× 16 + 4× 64 kB  8× 16 + 4× 64 kB 
L2 cache  4× 512 kB  2× 2048 kB  3× 2048 kB  4× 2048 kB  4× 2048 kB 
L3 cache  6144 kB  –  8192 kB  8192 kB  8192 kB 
Paměti DDR3-1333 DDR3-1866 DDR3-1866 DDR3-1866 DDR3-1866
Paměťových kanálů 2 2 2 2 2
Max. kapacita RAM 32 GB 64 GB 32 GB 32 GB 32 GB
Sběrnice 4 GT/s (HT) 5 GT/s (UMI) 5,2 GT/s (HT)  5,2 GT/s (HT)  5,2 GT/s (HT) 
BCLK 200 MHz 100 MHz 200 MHz 200 MHz 200 MHz
Násobič  17 30 16,5 18 20
Výrobní proces  45 nm SOI  32 nm  32 nm  32 nm  32 nm 
Velikost jádra  258 mm2  224 mm2  319 mm2  319 mm2  319 mm2 
Počet tranzistorů  758 milionů  1,18 mld.  ~1,6 mld. ~1,6 mld. ~1,6 mld.
TDP  125 W  100 W  95 W  125 W  125 W 
Instrukční sady 3DNow!+/Pro, SSE4A SSE4.1/4.2, AES-NI, AVX SSE4.1/4.2, AES-NI, AVX SSE4.1/4.2, AES-NI, AVX SSE4.1/4.2, AES-NI, AVX
Virtualizace AMD-V AMD-V AMD-V AMD-V AMD-V
Integrovaná grafika HD 7660D
PCI Express 2.0, 20×
Patice  AM3  FM2 AM3+  AM3+  AM3+ 

 

Testovací konfigurace a návod na interaktivní grafy

 

Testovací konfigurace

AMD FX-8120 vs. Intel Core i5-3570K

Testovací sestava pro jednotlivé procesory se liší jen v nutném minimu. Změny se kromě procesoru samotného týkají v případě různé platformy samozřejmě také základní desky, ty stejné paměti od Kingstonu jsou potom nastaveny dle schopností procesoru (na nejvyšší oficiálně podporovanou frekvenci). 

Operační systémy:

  • Microsoft Windows 7 Enterprise x64, SP1
  • Ubuntu 12.04.1 LTS, 64-bit

Společné komponenty:

  • grafická karta: Gigabyte GeForce GTX 680 OC, 2 GB (GV-N680OC-2GD)
  • systémový disk: Intel X25-M, 160 GB
  • zdroj: Enermax Modu87+, 800 W
  • chladič procesoru: Noctua NH-C12P
  • paměti: 2× 4 GB Kingston HyperX T1 DDR3-2400 (KHX24C11T1K2/8X)

Platforma AM3+:

  • základní deska: Gigabyte GA-990FXA-UD7
  • nastavení pamětí: 1866 MHz, 9-10-10-27-1T @ 1,65 V

AMD FX-8120 vs. FX-6100 vs. Intel Core i5-3570K

Testování CPU EHW 2012

Platforma LGA 1155:

  • základní deska: Gigabyte Z77X-UD5H
  • nastavení pamětí: 1600 MHz, 8-8-8-24-1T @ 1,5 V

AMD FX-8120 vs. FX-6100 vs. Intel Core i5-3570K

Testování CPU EHW 2012

Platforma FM2:

  • základní deska: Gigabyte GA-F2A85X-UP4
  • nastavení pamětí: 1866 MHz, 9-10-10-27-1T @ 1,65 V

AMD A10-5800K test

AMD A10-5800K test

AMD A10-5800K s Gigabyte GA-F2A85X-UP4

Platforma FM1:

  • základní deska: ASrock A75 Pro4
  • nastavení pamětí: 1866 MHz, 9-10-10-27-1T @ 1,65 V

V ovladačích grafické karty jsem vypnul vertikální synchronizaci a kvůli opakovatelnosti měření také adaptivní správu napájení v 3D režimu.

Testování CPU EHW 2012

Testování CPU EHW 2012

Za zapůjčení grafické karty děkujeme společnosti Gigabyte

Testování CPU EHW 2012

Kingston Za zapůjčení pamětí DDR3 děkujeme společnosti Kingston

Za zapůjčení zdroje děkujeme společnosti Enermax

Za poskytnutí chladiče Noctua NH-C12P a teplovodivé pasty Noctua NT-H1 děkujeme společnosti RASCOM Computerdistribution

 

Jak na interaktivní grafy 2.0

  1. Pokud se vám nelíbí písmo se stíny, velmi snadno je vypnete v Nastavení. Máte-li ještě problémy s rychlostí zobrazování, můžete v Nastavení povypínat také animace. 
  2. V základním nastavení jsou pruhy seskupeny dle úhlopříčky monitory a dále seřazeny dle naměřené hodnoty (vzestupně, či sestupně pak podle toho, je-li zrovna vyšší = lepší či naopak). Toto můžete snadno změnit zvolením řazení dle naměřené hodnoty v testu, seskupením třeba podle matrice apod.
  3. Po najetí myší na některou z položek (třeba na HP ZR24w) se z této stane 100 % (základ) a ostatní položky se spočítají podle ní. Všechny absolutní hodnoty se změní na relativní. Zpět se změní, až kurzor myši opustí oblast s názvy položek (v tomto případě procesorů).
  4. Budete-li chtít nějakou položku (monitor) v grafech sledovat, můžete si její pruh libovolně obarvit. Stačí klepnout levým tlačítkem myši na barevném pruhu a vybrat si z palety. Máte-li povoleny cookies, mělo by vám nastavení vydržet i pro další grafy v dalších kapitolách.
  5. Cenu a další základní parametry (například rozlišení či úhlopříčku) můžete zobrazit kdykoliv v každém grafu: stačí u vybraného procesoru najet kurzorem myši nad pruh s hodnotou (měření) a chvíli počkat. Objeví se jako plovoucí nápověda (tooltip).
  6. Zámek základu (monitor, který se stane těmi 100 % a od něhož se odvíjí další relativní hodnoty) aktivujete pomocí současného stisku klávesy CTRL a levého tlačítka myši nad procesorem (či jeho pruhem v grafu), který chcete uzamknout.
  7. Před prvním použitím grafů si pro jistotu vyprázdněte cache prohlížeče (zřejmě bude stačit refresh) a v případě problém smažte i příslušné cookies.
  8. Interaktivní grafy 2.0 jsou kompatibilní s prohlížeči Firefox (testovány verze 4.x), Opera (testováno s 11.x), Internet Explorer 8 a 9 (verze 7 a starší už nejsou podporovány) a Chrome (zde mají tooltipy hranaté rohy namísto kulatých).
  9. V případě problémů se nejdříve ujistěte, že máte v prohlížeči povoleny skripty i cookies, dále splnění bodů 7 a 8, teprve potom nám chybu prosím co nejpřesněji reportujte. Jedná se o první ostré nasazení grafů, takže i přes delší testování autorem a redakcí při komplexnosti aplikace určitě ještě nějaké mouchy v nějaké kombinaci objevíte.


Video a hudba

Video

x264 benchmark HD v5.0 64-bit

x264 benchmark testuje výkon procesoru při převodu videa v rozlišení 1080p s použitím kodeku x264. Benchmark je ke stažení na TechARP.com, nově používáme výsledky z obou průchodů.

x264 FHD benchmark v1.0.1 64-bit

FHD benchmark také používá bezplatný x264, počítá už s 64bitovými systémy a má příjemnější rozhraní. Benchmark si můžete stáhnout třeba z Guru3D (181 MB), archiv stačí rozbalit a už můžete testovat. Na rozdíl od x264 HD benchmarku nepotřebujete ani instalovat Avisynth. O výsledky se můžete podělit už v připraveném vlákně v našem diskuzním fóru.

Windows Media Encoder 9

1GB full HD video pořízené Frapsem ve hře Empire: Total War je převáděno do WMV9 720p, 5,5 Mb/s.

VirtualDubMod + XviD 1.3.2

VirtualDubMod slouží pouze jako rozhraní pro převod 1GB full HD videa ze hry Empire: Total War do .AVI s kodekem XviD. Profile @ Level je nastaveno na XviD HD 1080, dále jeden průchod a kvalita na 4,00 (1,00 je nejlepší kvalita, 31 nejhorší). Je zapnuta autodetekce a volba použitelných instrukčních sad (podporovány jsou jak SSE až do SSE4, tak 3DNow! 2), z voleb post-processingu nic vybráno není.

XMedia Recode 3.1.2.5 H.264

Oblíbený freewarový převaděč všech možných formátů videí používám v jeho portable verzi. Opět znásilňuji 1GB Full HD video z Empire: Total War, tentokrát je cílem v programu předdefinovaný profil YouTube 1080p s H.264. V nastavení kvality pak volím místo jednoho průchodu průchody dva (2-pass, cílový průměrný bitrate 8000). Zvuková část je převáděna do AAC.

Shrnutí

Hudba

WAV do MP3: LameEnc 3.99

Dva rozměrné stereo WAV (jeden 201MB, 16-bit/44 kHz, druhý 327MB 24-bit/96 kHz (L. v. Beethoven, Sonate 32 z 2L) jsou převáděny do formátu MP3. Použita je poslední stabilní verze LameEnc, VBR a kvalita extreme. LameEnc využívá instrukční sady MMX, SSE a SSE2.

WAV do AAC (Advanced Audio Coding): iTunes přes qaac (CoreAudioTool 7.9.9.7)

Dva rozměrné stereo WAV (jeden 201MB, 16-bit/44 kHz, druhý 327MB 24-bit/96 kHz (L. v. Beethoven, Sonate 32 z 2L) jsou převáděny do formátu AAC.

WAV do ALAC (Apple Lossless Audio Codec) pomocí refalac64 0.51

Dva rozměrné stereo WAV (jeden 201MB, 16-bit/44 kHz, druhý 327MB 24-bit/96 kHz (L. v. Beethoven, Sonate 32 z 2L) jsou převáděny do formátu ALAC.

WAV do FLAC (Free Lossless Audio Codec) pomocí FLAC 1.2.1b

Dva rozměrné stereo WAV (jeden 201MB, 16-bit/44 kHz, druhý 327MB 24-bit/96 kHz (L. v. Beethoven, Sonate 32 z 2L) jsou převáděny do formátu FLAC.

Shrnutí


Bitmapová grafika, fotografie, rendering

Bitmapová grafika, fotografie

Autopano Giga 64-bit 2.6.4

Autopano mám nastaveno na využití maxima jader procesoru i pomoc GPU. Zdrojem je 57 fotografií (JPEG) o rozlišení 2848 × 4288 px, výstupem pak jeden soubor JPEG se slepeným panoramatem. Jako výstupní kvalita je zvolen HDR output (obsahuje anti-ghost).

Testování CPU EHW 2012

Oproti minulým letům nechává ve výpočtech pomáhat GPU. Nevím ale, jestli se při finálním renderingu panoramatu nějak významně uplatní. V globálním nastavení Autopano dávám maximum vláken, které je procesor schopen paralelně zpracovávat.

Hugin 2011.4 64-bit 

Také zdarma dostupný Hugin pracuje nad 57 fotografiemi panoramatu (fotky je třeba slepovat v ose X i Y) od uživatele Johnyn (děkuji!). Měřím čas od zarovnání obrázků až po kompletní náhled panoramatu v editoru.

 Testy CPU nastavení Testy CPU nastavení

Paint.NET 3

Pro testování výkonu ve volně šiřitelném bitmapovém editoru používáme rozhraní TPUbench a benchmark PdnBench.

RawTherapee 64-bit v3.0.1

Zdarma dostupnou alternativu k placeným editorům RAW (Adobe Lightroom, Apple Aperture) trápím celkem 100 soubory RAW ze tří fotoaparátů (TIFF, CR2, DNG). Ty převádím na JPEG v nejvyšší kvalitě s uchováním EXIFu

3.0.1 byla poslední stabilní verzí v době sestavování metodiky. Vyzkoušel jsem také vývojovou 4.0.9.50, ale na Core i5 se mi podařila konverze stovky souborů dokončit jen někdy, na platformě s AMD FX ani jednou. Vyzkoušel jsem také několik o trochu starších sestavení 4.0.8.x a 4.0.7.x, bohužel s podobným výsledkem. Výkonnostní optimalizace ve verzi 4.x jsou přitom slibné, stejná úloha, co ve verzi 3.0.1 trvala procesoru Core i5-3570K 5:19 (min:s), zabrala ve 4.0.9 už jen 4:29,4 (min:s).

Zoner Photo Studio 15 x64

V jednom sub-testu jsou prováděny dávkové operace nad 56 fotografiemi ve formátu JPEG, v dalším je převáděno 100 fotek ve formátu RAW (TIFF a CR2 z přístrojů Canon a Adobe DNG z DSLR Pentax) do JPEG.

Shrnutí

Rendering

Cinebench R11.5 64-bit

Poslední verze benchmarku výkonu v Cinema 4D. Výsledek při renderingu na jediném jádru uvádíme spíše jako teoretickou zajímavost.

Frybench 64-bit

Postup měření v programu Frybench je popsán v tomto článku. Vaše výsledky můžete ukázat a s dalšími konfiguracemi srovnávat zde: Frybench – výsledky.

POV-Ray v3.7 beta RC6 64-bit

Beta verze freeware raytraceru POV-Ray umožňuje využít vícejádrové procesory. Pro testy používáme jednu ze scén mezi příklady dodanými s programem: chess2.pov a rozlišení 1600 × 1200 px s AA 0.3 (800 × 600 px bez anti-aliasingu měřím už jen pro srovnání s minulými generacemi procesorů/testů).

Blender 2.63 64-bit

Pro testování v 3D modeláři Blender používám demo-projekt Helicopter (demonstrace Cycles, stažitelné v balíku dem pro 2.61 z blender.org).

Testování CPU EHW 2012

 

Bez změny nastavení (mimo snížení rozlišení na 800 × 600 px, abych nečekal na výsledek věčnost) spustím rendering (F12) a měřím čas.

LuxMark 2.0 64-bit

LuxMark 2.0 vám v jednoduchém rozhraní otestovat výkon vašeho procesoru (CPU) nebo grafické karty (GPU) na několika scénách vykreslovaných právě pomocí LuxRenderu. U grafické karty budete samozřejmě potřebovat mít dostatečně moderní (včetně ovladačů) – podpora OpenCL (potažmo GPGPU) je minimálním požadavkem. LuxRender je možné využít ve spojení se spoustou modelářů Blenderem či 3Ds Max počínaje a Poserem nebo SketchUpem konče. Více informací ve starší aktualitě o LuxMarku. V systému je nainstalován balík Intel SDK for OpenCL 2012 64-bit a AMD APP SDK v2.7 x64. Do shrnujících grafů započítávám výsledky v komplexní scéně „Room“.

Shrnutí

Do shrnutí z předešlého nepočítám jen Cinebench Single core a LuxMark medium.

 

Komprese a šifrování

WinRAR 4.20 64-bit

Používám zabudovaný benchmark (ALT + B) se zapnutou volbou multithreading. 

Pokud byste se na to náhodou chtěli zeptat, tak namátkou jsem  u procesoru Core i5-3570K vyzkoušel v registru Windows vypnout i Core parking. Výsledkem bylo mírné zhoršení výsledku (což se možná vešlo do běžné chyby měření). U procesorů bez HyperThreadingu dokonce ani kvůli WinRARu nemusíte Core parking nijak řešit.

AMD FX-8120 vs. FX-6100 vs. Intel Core i5-3570K AMD FX-8120 vs. FX-6100 vs. Intel Core i5-3570K

7-zip 9.20 x64

I v 7-zipu využívám integrovaného benchmarku, v grafu je celkový výsledek počítaný z výkonu při kompresi i dekompresi.

WinZIP 16.5 + AES

Extrakce 3,5GB zaheslovaného archivu ZIP (šifrování AES, zkomprimovaná celá složky hry World of Tanks). Zatím se bohužel zdá, že výsledky jsou dost podle toho, jak se zrovna SSD vyspí. Dost nesedí hlavně výsledek Core i3-3220 (byť je to nejlepší ze tří měření).

Testy CPU nastavení

TrueCrypt 7.1a

Testy pochází z integrovaného benchmarku (Tools, Benchmark), velikost bufferu nastavena na 500 MB. Výsledek je průměrem šifrování a dešifrování.

V prvním grafu je spočtena průměrná rychlost ze všech dílčích testů TrueCryptu (tento jediný graf je taková počítán do dalších souhrnů):

Dílčí testy TrueCrypt 7.1a:

Shrnutí

 

Virtualizace (VirtualBox)

VirtualBox 4.1.20 + Ubuntu 12.04.01 x64

Ve VirtualBoxu přiděluji maximum dostupných fyzických jader a 2048 MB RAM.

AMD FX-8120 vs. FX-6100 vs. Intel Core i5-3570K
AMD FX-8120 vs. FX-6100 vs. Intel Core i5-3570K
AMD FX-8120 vs. FX-6100 vs. Intel Core i5-3570K

Shrnutí

PCMark 7 a multi-tasking

Poslední verzi PCMarku jsem do metodiky zařadil především díky snadnějšímu srovnání s vašimi případně naměřenými výsledky a také proto, že nabízí ještě vcelku přesnou možnost změření výkonu při dvou paralelně prováděných úlohách (multi-tasking).

 


Následující dva testy jsou spouštěny současně:

 


Následující dva testy jsou spouštěny současně:

 

 


 


Následující dva testy jsou spouštěny současně:


 

Linux (Ubuntu 12.04.1 LTS 64-bit)

Ubuntu 12.04.1 LTS 64-bit

Po určitém rozvažování jsem se rozhodl testování v linuxové distribuci nakonec zařadit. Zvolil jsem asi tu „nejlidovější“ a musím říct, že návrat k mému kdysi primárnímu OS se mi docela líbil (přece jen kompletní start docela pěkně vypadajícího prostředí na testovacím HW za šest sekund má něco do sebe).

S vámi bych se chtěl pro začátek poradit, jestli byste uvítali výsledky z Linuxu zařazené mezi ostatní (například C-Ray v renderingu, RAMspeed v kapitole s rychlostí pamětí atd.), nebo takto vyseparovány do své kapitoly?

Phoronix Test Suite

Kompilace jádra

Vždy s parametrem -j počet_vláken (max. podporovaných procesorem).

7-zip 9.20 x64

Stejně jako ve Windows je uváděn jen celkový výsledek (komprese i dekomprese).

GtkPerf

Pro vyšší přesnost navyšuji výchozích 100 kol testů na 1000.

Shrnutí

Tento shrnující graf je sice velkou směskou, ale je zároveň mezivýsledkem účastnícím se na hlavním shrnujícím grafu, tak vám jej pro zajímavost předkládám také.

 

Teoretické testy, PI, prvočísla, Zlib, AES, Hash, VP8, fraktály

Deep Fritz 12 Chess benchmark

Benchmark simulující počítání šachových kombinací skutečného šachového programu Fritz má svoji zdarma dostupnou verzi. Já jsem ale použil benchmark přímo v programu Deep Fritz 12, který by měl být stejný až na jednu drobnost – umožňuje nastavit více než osm vláken (za tip děkuji Flank3rovi).

Testy CPU nastavení Testy CPU nastavení

SuperPI mod XS 1.5

Výpočet Ludolfova čísla na milion desetinných míst.

wPrime 2.0

Vícevláknová obdoba jednoduchého benchmarku SuperPI (samozřejmě se nepočítá Ludolfovo číslo, ale prvočísla).

Y-cruncher 0.5.5

Údajně nejrychlejší program pro výpočet Ludolfova čísla je vícevláknový a autor se chlubí tím, že předčí nejen SuperPi na jednojádru, ale také PiFast na dvoujádru či QuickPi na čtyřjádru.

AIDA64 v2.60

Následující sada testů v AIDA64 (dříve Everest, předtím jen AIDA32) jsou do jisté míry low-level benchmarky. Většina zatíží hlavně ALU, ty od VP8 níže pak FPU. AES je v podstatě testem přítomnosti instrukční sady AES-NI (+ velkou roli hraje propustnost paměti – v single channelu je výsledek sotva 60%).

Shrnutí

 

Rychlost pamětí

AMD FX i Ax podporují frekvenci až 1866 MHz, čehož jsem využil. Ani tak bohužel pro AMD není dosaženo na propustnost a latence níže taktovaných pamětí ve společnosti Ivy Bridge. RAMspeed v OS Ubuntu x64 potvrzuje to samé. Tento linuxový paměťový test však na rozdíl od AIDA64 dokáže těžit i ze čtyřkanálového přístupu procesorů LGA 2011.

Ivy Bridge (Core i7-3770K):

Sandy Bridge (Pentium G860):

Pentium G860: detekce a testy 

 Deneb:

AMD Phenom II X4 965

Piledriver:

AMD FX-8350 (Vishera) screenshoty

Trinity:

AMD A10 vs Intel Core i3

Bulldozer:

AMD FX-8120 vs. FX-6100 vs. Intel Core i5-3570K

Sandy Bridge-E:

AMD FX-8350 (Vishera) screenshoty

Shrnutí

 

Hry

Není-li řečeno jinak, jedná se o průměrné snímkové frekvence (avg. fps). Téměř vždy jde o nejvyšší možné nastavitelné detaily, jen anti-aliasing zůstává vypnut.

Vysoké rozlišení

Jestli mi někdo bude brečet v diskuzi, že nemám „ful hádé“, tak mu už raději dopředu sděluji, že rozdíl (v Mpx) mezi 1680 × 1050 px a 1920 × 1080 px je malý a ještě více v optice testu CPU. Stejně uvidíte, že i při nastavení max. detailů (jen bez anti-aliasingu, který je opravdu čistě záležitostí GPU) je vliv rozlišení i třeba proti 800 × 600 px vcelku malý – vybrané testy jsou v případě použití GeForce GTX 680 opravdu hodně závislé na procesoru.

 

Call of Duty 4: Modern Warfare

Stále nejspíše nejhranější díl CoD (možná společně s dvojkou) testuji pomocí timedema obsaženého v již dále nevyvíjeném automatizovaném nástroji TpuBench. Detaily jsou nastaveny na maximum, anti-aliasing vypnut.

Enemy Territory: Quake Wars

V OpenGL ET:QW používám osvědčené timedemo a v nastavení dávám předvolbu Quality: High. Ta nastaví skoro vše na maximální hodnoty, jen osvětlení je na hodnotě Normal a anti-aliasing vypnut. Vypnuty jsou i soft particles, anizotropní filtrování je na hodnotě 8×. Přes konzoli hru zbavuji omezení snímkové frekvence. Jiný poměr stran může způsobit, že v rozlišení 640 × 480 px bude výsledek nižší než v 1680 × 1050 px.

Testy CPU nastavení Testy CPU nastavení Testy CPU nastavení    

Left 4 Dead

Zástupce enginu Source je otestován pomocí vlastního timedema, kvůli kterému musím opatrně konzervovat verzi hry (Steam má neustálé tendendce všechno navzdory předvolbám aktualizovat). Nastavuji maximální detaily, trilineární filtraci textur a jen anti-aliasing zůstává vypnut. Důležité je zapnutí multicore renderingu a vypnutí vertikální synchronizace.

 Testy CPU nastavení Testy CPU nastavení

The Elder Scrolls V: Skyrim

Pro testování jsem vybral dvě uložené pozice v lokacích Whiterun (pohled na velkou část měst a ještě i za hradby) a Riverwood (stromy, voda, vesnice – v ZIPu je ještě třetí pozice Ragged Flagon (podzemí Riftenu), kterou jsem pro testy CPU nevyužil). Po nahrání uložené pozice počkám, až se uklidní ukazatel se snímky za sekundu (načítání z disku, obyčejně je to ale tak dvě až tři sekundy po zmizení nahrávací obrazovky) a poté měřím deset sekund (nastaveno ve FRAPSu). Nahraji další pozici a postup opakuji. V grafu je hodnota průměrných fps spočtena jako průměr dvou desetisekundových měření. Použitá verze hry je 1.7.7.0.6, nejsou přidány žádné balíčky textur ani jiná rozšíření.

Testy CPU nastavení Testy CPU nastavení Testy CPU nastavení

Unreal Tournament 3

Letitý UT3, jehož engine je stále základem obrovského množství her, testuji pomocí průletu na VCTF-Suspense. Detaily jsou nastaveny na maximum (ve hře číslo 5, což obnáší i 16× AF), fyzika softwarová. Beru lepší výsledek ze dvou opakování.

World in Conflict

Oproti minulé metodice mohu díky dostatečně výkonné grafické kartě nastavit celkové grafické detaily na hodnotu Nejvyšší. To obnáší DX10 rendering a dokonce 4× MSAA. Vypnuta je pouze volba Voda odráží oblaka. Podobně jako ET:QW, i World in Conflict podporuje FOV a výsledky v nižším rozlišení s poměrem stran 4:3 mohou být vyšší než ty v 1680 × 1050 px s 16:10.

World of Tanks

V klientu verze 8.0 přehrávám replay v jedné z nejnáročnějších a současně na procesoru nejvíce závislých map: Ensk. S poměrně svižným stíhačem tanků SU-100 projedu velkou část mapy (problematické křoviny, většinu města). Často je používán sniper mód, především na začátku hry pak oddálení kamery a celkový pohled na spoustu objektů. Použit je Rendering Improved, Graphics Quality je nastaveno na Maximum, vše až na položku Enhanced Shadows je na maximálních možných hodnotách.

X-Plane 10

V náročném leteckém simulátoru používám benchmark skript spouštějící hru s parametrem –fps_test=1 (2, 3), ze tří různých testů pak dělám průměr. Ten je prezentován v grafu. V Setting, Rendering Options jsou prakticky všechna nastavení detailů v horních třech oddílech na maximu, počty objektů a cest na hodnotě „tons“. Detaily letiště ponechány výchozí, detaily odrazů na vodě jsou vypnuty stejně jako „HDR anti-aliasing“. Mraky nastaveny na rovněž výchozích 100 %. Přesná verze hry je 10.05r1.

 

Testy CPU nastavení

 

Nízké rozlišení

Druhá sada herních testů je prováděna v co nejnižším rozlišení, detaily jsou však typicky nastaveny na maximální hodnoty (kdyby náhodou CPU byl účasten na některých z nich).

Nastavení Skyrimu:

Testování CPU EHW 2012 Testování CPU EHW 2012 Testování CPU EHW 2012  

Výsledkem v grafu je průměr z výkonu ve dvou lokacích (Whiterun a Riverwood):

Shrnutí

Všechny herní testy se podílí na výsledném průměrujícím grafu z her, beru jak výsledky z nízkého, tak vysokého rozlišení. Minimální fps měřená ve World in Conflict a World of Tanks do toho samozřejmě nemotám.

Provozní vlastnosti (příkon, zahřívání)

Příkon (spotřeba) změřený izolovaně na EPS12V

Poprvé se v recenzi na EHW můžete setkat kromě tradičního měření příkonu celé sestavy zásuvkovým wattmetrem také izolovaným měřením příkonu na EPS12V.

Bočník měřící procházející proud sestrojil Honza Černý, napětí bylo kontrolováno běžným multimetrem VoltCraft VC-140.

Příkon (spotřeba) celého PC s daným CPU

wattmetr

Spotřeba (ano příkon) celé sestavy s daným procesorem je měřena pomocí zásuvkového měřiče spotřeby elektrické energie FK Technics. A přestože chladič, zdroj a grafická karta zůstávají neměnné a paměti jsou nastaveny také velmi srovnatelně, pořád se jedná o spotřebu celé platformy dané do jisté míry také základní deskou, osazenou čipovou sadou a dalšími čipy právě na desce (i když i v tomto případě jsou podmínky díky použití desek Gigabyte ze stejné třídy v rámci možnosti co nejvíce srovnány).

Teplotní testy berte spíš jako velmi hrubou informaci. Použitým chladičem je sice Noctua NH-C12P a pastou pak Noctua NT-H1, přesto může dojít k ne vždy stejnému rozetření pasty a teplota okolí se může také mezi testy lišit až o tři stupně Celsia.

  

Důležité je také přímo nesrovnávat teploty CPU napříč různými platformami. Intel i AMD mají teplotní senzor pojat evidentně dost jinak.

Shrnující grafy

Kdo rád přeskakuje kapitoly, nebo prostě nemá tolik času, snad ocení právě tuto kapitolu. Všechny souhrnné (průměrující, zjednodušující, zkreslující – jak chcete) grafy z předchozích stránek pěkně pohromadě.

Shrnutí a verdikt

Po všech těch shrnujících grafech jako obvykle ještě jeden pořádně zavádějící (nejsou započítány výsledky z kapitol Teoretické testy, Rychlost pamětí a PCMark 7):

Podělíme-li celkový (průměrný) výkon procesorů jejich cenou, vypadne nám takovýto „index výhodnosti“:

Ten by ale platil jen v případě, že byste kupovali pouze samotné CPU. Jak by tomu bylo, kdybyste naopak kupovali celé PC? Zkusil jsem pro takový případ udělat modelovou sestavu se zhruba podobně vybavenými deskami pro zúčastněné platformy.

  Core i5-3570K (4× 3,4 Ghz) Core i7-3770K (4× 3,5 GHz) Core i7-3820 (4× 3,6 GHz) Core i3-3220 (2× 3,3 GHz) Pentium G860 (2× 3,0 GHz) FX-8350 (8× 4,0 GHz) FX-8120 (8× 3,1 Ghz) A10-5800K (4× 3,8 GHz) A8-3870K (4× 3,0 GHz) Phenom II X4 965 (4× 3,4 GHz) FX-6100 (6× 3,3 Ghz)
Cena za CPU vč. DPH [Kč] 5350 7650 6920 2740 1500 4560 3610 2900 2180 2200 2620
Základní deska [Kč] 2950 2950 4700 2950 2950 2905 2905 2530 1700 2870 2870
  Gigabyte Z77X-D3H Gigabyte Z77X-D3H Gigabyte GA-X79-UD3 Gigabyte Z77X-D3H Gigabyte Z77X-D3H Gigabyte 990FXA-UD3 Gigabyte 990FXA-UD3 MSI FM2-A85XA-G65 Gigabyte A75-D3H Gigabyte 990FXA-UD3 Gigabyte 990FXA-UD3
Grafická karta [Kč] 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160 4160
  Sapphire Radeon HD 7850, 1 GB Sapphire Radeon HD 7850, 1 GB Sapphire Radeon HD 7850, 1 GB Sapphire Radeon HD 7850, 1 GB Sapphire Radeon HD 7850, 1 GB Sapphire Radeon HD 7850, 1 GB Sapphire Radeon HD 7850, 1 GB Sapphire Radeon HD 7850, 1 GB Sapphire Radeon HD 7850, 1 GB Sapphire Radeon HD 7850, 1 GB Sapphire Radeon HD 7850, 1 GB
Paměti [Kč] 990 990 990 990 990 990 990 990 990 990 990
  Kingston HyperX Predator 8GB kit 1866 MHz Kingston HyperX Predator 8GB kit 1866 MHz Kingston HyperX Predator 8GB kit 1866 MHz Kingston HyperX Predator 8GB kit 1866 MHz Kingston HyperX Predator 8GB kit 1866 MHz Kingston HyperX Predator 8GB kit 1866 MHz Kingston HyperX Predator 8GB kit 1866 MHz Kingston HyperX Predator 8GB kit 1866 MHz Kingston HyperX Predator 8GB kit 1866 MHz Kingston HyperX Predator 8GB kit 1866 MHz Kingston HyperX Predator 8GB kit 1866 MHz
Zdroj [Kč] 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800
  Enermax Triathlor ETA450AWT Enermax Triathlor ETA450AWT Enermax Triathlor ETA450AWT Enermax Triathlor ETA450AWT Enermax Triathlor ETA450AWT Enermax Triathlor ETA450AWT Enermax Triathlor ETA450AWT Enermax Triathlor ETA450AWT Enermax Triathlor ETA450AWT Enermax Triathlor ETA450AWT Enermax Triathlor ETA450AWT
Skříň [Kč] 2350 2350 2350 2350 2350 2350 2350 2350 2350 2350 2350
  Fractal Design Define R4 Fractal Design Define R4 Fractal Design Define R4 Fractal Design Define R4 Fractal Design Define R4 Fractal Design Define R4 Fractal Design Define R4 Fractal Design Define R4 Fractal Design Define R4 Fractal Design Define R4 Fractal Design Define R4
SSD [Kč] 2150 2150 2150 2150 2150 2150 2150 2150 2150 2150 2150
  Kingston SSDNow V300, 120GB Kingston SSDNow V300, 120GB Kingston SSDNow V300, 120GB Kingston SSDNow V300, 120GB Kingston SSDNow V300, 120GB Kingston SSDNow V300, 120GB Kingston SSDNow V300, 120GB Kingston SSDNow V300, 120GB Kingston SSDNow V300, 120GB Kingston SSDNow V300, 120GB Kingston SSDNow V300, 120GB
HDD [Kč] 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870 1870
  WD Red WD10EFRX 1TB WD Red WD10EFRX 1TB WD Red WD10EFRX 1TB WD Red WD10EFRX 1TB WD Red WD10EFRX 1TB WD Red WD10EFRX 1TB WD Red WD10EFRX 1TB WD Red WD10EFRX 1TB WD Red WD10EFRX 1TB WD Red WD10EFRX 1TB WD Red WD10EFRX 1TB
Cena sestavy bez monitoru a dalších periferií [Kč] 21620 23920 24940 19010 17770 20785 19835 18750 17200 18390 18810
Cena za procesor, desku a paměti [Kč] 9290 11590 12610 6680 5440 8455 7505 6420 4870 6060 6480

 

Monitor, klávesnici, myš a další možné periferie už jsem do modelu nezahrnoval. Samozřejmě je trochu problém v tom, že pokud bude někdo uvažovat o AMD A10, potom nejspíše nebude chtít nic víc než integrovanou grafiku HD 7660D. Do kalkulace by tak bylo lepší započítat levnější Athlon pro FM2, to ale bohužel není dost dobře možné – nejvýkonnější oznámený Athlon nemá tak silné CPU jako A10 (ale jako A8). Levnější Core i3 a Pentia zase budou lidé častěji párovat s deskami s čipsetem B75, nikoli Z77. Jistě chápete, že to nelze udělat pro všechny kombinace a odrážíme se ve zbytku komponent od jakési „střední třídy“.

Už při prvních pokusech o zavedení poměru výkon/cena celé sestavy jsme se v diskuzi dopracovali k tomu, že možná takovým optimem pro počítání výkon/cena by bylo vzít v potaz nikoli cenu celé sestavy, ale toho, co typicky upgradujete a spolu to nejvíce souvisí: tedy kromě procesoru ještě také základní desku a operační paměť.

Verdikt

Rozdíl mezi Core i7-3770K a i5-3570K dosahuje 25 % v ideálních případech pro dražší procesor, v průměru ze všech dílčích testů to dělá nějakých 14 %. To je samozřejmě více než kolik činí rozdíl cen. Existuje ale i další pohled na problematiku, který obsahuje větu o nejvýkonnějším procesoru  pro platformu LGA 1155. Zde ale podle mě do všeho citelně promlouvá Core i7-3820, za něhož sice s deskou zaplatíte více než za i7-3770K, máte však k dispozici čtyřkanálový řadič pamětí, plnou podporu virtualizace a především možnost citelného upgradu.

Core i7-3770K je zkrátka takový od každého trochu a nikdo se nemůže divit, že v žebříčcích zájmu a prodejnosti je daleko za i5-3570K. Obdivuhodné je na něm hlavně to, jaký výkon se Intelu povedlo nacpat do TDP 77 W.

 

Málem bych zapomněl na srovnání s AMD. FX-8350 samozřejmě ve hrách, nebo při zpracování bitmap nemá šanci, ale podívejte se třeba na převody videa nebo i některé případy renderingu. Zde AMD zvláště vzhledem k ceně boduje a ve chvíli, kdy uživatel vybírá procesor s vědomím, že to nejnáročnější na něm bude něco z jmenovaných úkonů, pak má asi jasno.

Integrovaná grafika HD 4000 sice úrovně nejvyššího zabudovaného Radeonu v AMD Trinity nedosahuje, přesto se už nedá říct, že by si na ní nešlo zahrát a především dvourozměrné úkoly plní takřka srovnatelně dobře. Mě a myslím, že i spoustu dalších uživatelů, spíše štve, že nám Intel dost omezuje výběr – chci-li Ivy Bridge s otevřeným násobičem, musím (často zbytečně) platit za nejsilnější grafické jádro a z nějakého podivného naopak nemám k dispozici VT-d (ale jen VT-x). V tomto ohledu jsem zvědav na změnu nabídky u Haswellu.


 

Intel Core i7-3770K (Ivy Bridge, 4× 3,5 GHz)

+ nejvýkonnější procesor
+ výkon/příkon
+ otevřený násobič (přetaktování)
+ v mnohavláknových aplikacích až o čtvrtinu rychlejší než i5-3570K
+ integrovaná grafika HD 4000 
– HyperThreading má někde malý, někde i negativní vliv
– zahřívání
– cena 

Graf ceny produktu Intel Core i7-3770K poskytuje server Heureka.cz

Core i7-3770K v nové metodice: vyplatí se příplatek oproti i5?

Ohodnoťte tento článek!