Poslední díl skládačky integr. grafik: Intel HD 2500 (Core i3-3220)

0

Parametry slabší grafiky v Ivy Bridge

Po testu Preview AMD A10-5800K: herní testy desktopového Trinity jsme mohli korunovat nového krále integrovaných grafik – Radeon HD 7660D z APU AMD A10-5800K. Když přikročíte k overclockingu (především pamětí, viz Přetaktovaný Radeon HD 7660D z Trinity proti GeForce 8800 GT), je odstup „Devastatora“ od nejsilnější současné grafiky Intelu (HD 4000) docela velký.

Intel Core i3-3220
Intel Core i3-3220

Intel Core i3-3220 Intel Core i3-3220 Intel Core i3-3220 Intel Core i3-3220

Intel Core i3-3220 Intel Core i3-3220 Intel Core i3-3220 Intel Core i3-3220

V Core i3-3220, hlavním soupeři A10, však nepracuje HD 4000. Nejlepší integrovanou grafiku má Intel v desktopu jen v několika procesorech. Z rodiny Core i3 ji najdete třeba v modelu 3225, slabší HD 2500 se nachází také ve většině procesorů Core i5. 

 

Cenový rozdíl mezi i3-3220 a i3-3225 v současnosti činí asi 300 Kč a už samotný pohled na papírové rozdíly mezi HD 4000 a 2500 by pro všechny, kdo na integrované grafice chtějí něco hrát, měl být alarmující. Silnější IGP má k dispozici 16 prováděcích jednotek (EU), kdežto HD 2500 jen 6. Funkční výbavou se ale HD 2500 od HD 4000 nijak neliší.

Prováděcí jednotky HD 4000 zvládají na rozdíl od předchozí generace (HD 3000/2000) dual-issue, konkrétně provést 2× MAD (Multiply-Add) za takt. Ačkoli jsem to explicitně nikde uvedeno neviděl, předpokládám, že EU HD 2500 umí to samé. Mezigeneračních změn je ještě více, z těch signifikatních pak některé spojené s podporou DirectX 11 (hull shader, vyhrazená jednotka (teselátor), změna práce s pamětí, rychlejší geometrie, zrychlení výpočtů se Z atd.). Hardware HD 4000 a 2500 by měl být také schopen kvalitnější anizotropní filtrace.

Stejně jako při testu HD Graphics 4000 jsem použil základní desku, jež je určena spíše pro náročné uživatele (a overclockery), než do úsporného PC. Proto je zejména při srovnání příkonu PC v idle i3-3220 trochu v nevýhodě. GPU-Z detekuje/nedetekuje, takže se jeho čísly nenechte zmást.

 Core i3-3220 detekce

Core i3-3220 detekce Core i3-3220 detekce Core i3-3220 detekce Core i3-3220 detekce

Core i3-3220 detekce

Parametry grafických řešení dle specifikací výrobce

  G45 Core i3-530 Core i5-2300 Core i5-2500K Core i3-3220 Core i5-3570K
  GMA X4500HD HD Graphics HD Graphics 2000 HD Graphics 3000 HD Graphics 2500 HD Graphics 4000
Jádro Eaglelake Clarkdale Sandy Bridge Sandy Bridge Ivy Bridge Ivy Bridge
Výrobní proces 90 nm 45 nm 32 nm 32 nm 22 nm 22 nm
Velikost jádra 150 mm² 288 mm² 230 mm² 315 mm² 160 mm² 160 mm²
Tranzistorů 177 mil. 330 mil. 384 mil. 1,4 mld. 1,4 mld.
Stream procesorů 10 12 6 12 6 16
Takt jádra 800 MHz 733 MHz 1100 MHz 1100 MHz ? 1150 MHz 1150 MHz
Takt SP 800 MHz 733 MHz 1100 MHz 1100 MHz ? 1150 MHz 1150 MHz
ROP/RBE 2 2 2 2 2 2
Texturovacích jedn. 4 4 3 4 ? 3 ? 4
Paměť 1,7 GB DDR3 1,72 GB DDR3 1,72 GB DDR3 1,72 GB DDR3 1,72 GB DDR3 1,72 GB DDR3
Takt pamětí 1066 MHz 1333 MHz 1333 MHz 1333 MHz 1600 MHz 1600 MHz
Šířka sběrnice 128-bit 128-bit 128-bit 128-bit 128-bit 128-bit
Propustnost pamětí 8,53 GB/s 21,3 GB/s 21,3 GB/s 21,3 GB/s 25,6 GB/s 25,6 GB/s
Fillrate (pixely) 1,6 Gpx/s 1,47 Gpx/s 2,2 Gpx/s 2,2 Gpx/s 2,3 Gpx/s 2,3 Gpx/s
Fillrate (textury) 3,2 Gtx/s 2,93 Gtx/s 3,3 Gtx/s 4,4 Gtx/s ? ?
FLOPS
Max. spotřeba 65 W (s CPU) 95 W (s CPU) 95 W (s CPU) 55 W (s CPU) 77 W (s CPU)
Délka karty
Shader model 4.0 4.1 4.1 4.1 5.0 5.0
  Radeon Radeon Radeon A6-3650 A8-3850 A10-5800K
  HD 4290 HD 6310 HD 6410D HD 6530D HD 6550D HD 7660D
Jádro RS880D/RV620 Wrestler Sumo Sumo Sumo Devastator
Výrobní proces 55 nm 40 nm 32 nm 32 nm 32 nm 32 nm
Velikost jádra 73 mm² 75 mm² 228 mm² 228 mm² 246 mm²
Tranzistorů 205 mil. 1,2 mld. 1,2 mld. 1,3 mld.
Stream procesorů 8 (40) 16 (80) 32 (160) 64 (320) 80 (400) 96 (384)
Takt jádra 700 MHz 500 MHz 600 MHz 443 MHz 600 MHz 800 MHz
Takt SP 700 MHz 500 MHz 600 MHz 443 MHz 600 MHz 800 MHz
ROP/RBE 4 4 4 8 8 8
Texturovacích jedn. 4 8 8 16 20 24
Paměť 512 MB sd. + 128 MB sideport 384 MB DDR3 sdílená sdílená sdílená sdílená
Takt pamětí 2200 MHz 1066 MHz 1333–1866 MHz 1333–1866 MHz 1333–1866 MHz 1866 MHz
Šířka sběrnice 128-bit 128-bit 128-bit 128-bit 128-bit 128-bit
Propustnost pamětí 23,4 GB/s 17,1 GB/s 21,3–29,9 GB/s 21,3–29,9 GB/s 21,3–29,9 GB/s 29,9 GB/s
Fillrate (pixely) 2,8 Gpx/s 2 Gpx/s 2,4 GPx/s 3,5 GPx/s 4,8 GPx/s 6,4 GPx/s
Fillrate (textury) 2,8 Gtx/s 4 Gtx/s 4,8 GTx/s 7,1 GTx/s 12 GTx/s 19,2 GTx/s
FLOPS 56 GFLOPS 80 GFLOPS 192 GFLOPS 284 GFLOPS 480 GFLOPS ~700 GFLOPS
Max. spotřeba 18 W (s CPU) 65 W (s CPU) 65/95 W (s CPU) 65/95 W (s CPU) 100 W (s CPU)
Délka karty
Shader model 4.1 5.0 5.0 5.0 5.0 5.0
  Radeon Radeon Radeon Radeon Radeon Radeon
  HD 5450 HD 6450 HD 5570 HD 5670 HD 6570 HD 6670
Jádro Cedar Caicos Redwood Redwood Turks Turks
Výrobní proces 40 nm 40 nm 40 nm 40 nm 40 nm 40 nm
Velikost jádra 67 mm² 67 mm² 104 mm² 104 mm² 118 mm² 118 mm²
Tranzistorů 292 mil. 370 mil. 627 mil. 627 mil. 716 mil. 716 mil.
Stream procesorů 16 (80) 32 (160) 80 (400) 80 (400) 96 (480) 96 (480)
Takt jádra 650 MHz 750 MHz 650 MHz 775 MHz 650 MHz 800 MHz
Takt SP 650 MHz 750 MHz 650 MHz 775 MHz 650 MHz 800 MHz
ROP/RBE 4 4 8 8 8 8
Texturovacích jedn. 8 8 20 20 24 24
Paměť 512, 1024 MB DDR2/DDR3 512 MB GDDR5 512, 1024 MB DDR2/GDDR3 512, 1024 MB GDDR3/GDDR5 512-2048 MB/ 512-1024 MB 1024 MB
Takt pamětí 400/800 MHz 3600 MHz 400/900 MHz 800/1000 MHz 900 MHz DDR3 / 900–1000 MHz GDDR5 1000 MHz
Šířka sběrnice 64-bit 64-bit 128-bit 128-bit 128-bit 128-bit
Propustnost pamětí 6,4/12,8 GB/s 28,8 GB/s 12,8/25,6/57,6 GB/s 25,6/64 GB/s 28,8/64 GB/s 64 GB/s
Fillrate (pixely) 2,6 GP/s 3 Gpx/s 5,2 GPx/s 6,2 GPx/s 5,2 GPx/s 6,4 GPx/s
Fillrate (textury) 5,2 GT/s 6 Gtx/s 13 GTx/s 15,5 GTx/s 15,6 GTx/s 19,2 GTx/s
FLOPS 104 GFLOPS 240 GFLOPS 520 GFLOPS 620 GFLOPS 624 GFLOPS 768 GFLOPS
Max. spotřeba 20 W 31 W 39 64 60 W 66 W
Délka karty 15 cm 15 cm 5 5 15 cm
Shader model 5.0 5.0 5.0 5.0 5.0 5.0
  Ion 2 GeForce GeForce GeForce GeForce GeForce
  (Ion Next-Gen) 210 GT 520 GT 430 GTS 450 8800 GT
Jádro GT218 GT218 GF119 GF108 GF106 G92
Výrobní proces 40 nm 40 nm 40 nm 40 nm 40 nm 65 nm
Velikost jádra 57 mm² 57 mm² 79 mm² ~116 mm² ~240 mm² 324 mm²
Tranzistorů 260 mil. 260 mil. N/A 585 mil. 1,17 mld. 754 mil.
Stream procesorů 16 16 48 96 192 112
Takt jádra 450 MHz 589 MHz 810 MHz 700 MHz 783 MHz 600 MHz
Takt SP 1100 MHz 1402 MHz 1620 MHz 1400 MHz 1566 MHz 1500 MHz
ROP/RBE 4 4 4 4 16 16
Texturovacích jedn. 8 8 8 16 32 56
Paměť 512 MB DDR3 512 MB DDR2 1 GB GDDR3 1 GB DDR3 1 GB GDDR5 512 MB GDDR3
Takt pamětí 800 MHz 1000 MHz 1800 MHz 1800 MHz 3608 MHz 1800 MHz
Šířka sběrnice 128-bit 64-bit 64-bit 128-bit 128-bit 256-bit
Propustnost pamětí 12,8 GB/s 8 GB/s 14,4 GB/s 28,8 GB/s 57,7 GB/s 57,6 GB/s
Fillrate (pixely) 1,8 Gpx/s 2,4 Gpx/s 5 Gpx/s 2,8 Gpx/s 12,5 Gpx/s 9,6 Gpx/s
Fillrate (textury) 3,6 Gtx/s 4,7 Gtx/s 10 Gtx/s 11,2 Gtx/s 25,1 Gtx/s 33,6 Gtx/s
FLOPS 35 GFLOPS 45 GFLOPS 78 GFLOPS 269 GFLOPS 601 GFLOPS 336 GFLOPS
Max. spotřeba 30,5 W 29 W 49 W 106 W 105 W
Délka karty 17 cm 17 cm 15 cm 21 cm 23 cm
Shader model 4.1 4.1 5.0 5.0 5.0 4.0

Poznámka: Počet texturovacích jednotek GPU Ivy Bridge jsem zatím v žádných materiálech nenalezl, u HD 4000 to budou pravděpodobně zase čtyři, u HD 2500 nejspíše tři.

 

Než se pustíte do zkoumání jednotlivých kapitol s výsledky testů, rád bych vám připomněl, že některá fakta a třeba testy akcelerace HD videa k dalším v grafech obsaženým GPU jsou obsaženy vždy v článku právě jim věnovaném:

Další testovací konfigurace, informace k interaktivním grafům

Testovací konfigurace ve srovnání

Jelikož velká část testovaných GPU je integrovaných buď v procesoru, nebo čipové sadě, nebylo samozřejmě možné použít stejný procesor a stejnou základní desku pro všechny grafické čipy. Jako takový středobod jsem použil Core i5-2300 a desku s Intel H67. To je sama o sobě konfigurace zastupující položku Intel HD 2000, po přidání Radeonu HD 5450, 6450 či 6570 nebo třeba GeForce 210 či GT 430 pak základ pro měření výkonu těchto diskrétních grafik. Podrobné parametry mnoha zúčastněných grafik najdete v článcích Test integrovaných a levných grafik, část II. (video) a Test levných grafik: HD 6570 a GeForce GT 520 + 430.

Vaší pozornosti by nemělo ujít například to, že v případě HD 5450 jde o variantu s 512 MB DDR2, u HD 6450 o vzácnou a dražší verzi s vysokým taktem a GDDR5 a rovněž fakt, že u GT 430 byla testována varianta s 64bitovou sběrnicí. Dle specifikací Nvidie by tato karta měla být (a také nejčastěji je) v prodeji s 128bitovou paměťovou sběrnicí.

Trošku jako z jiného světa či jako pěst na oko, chcete-li, je mezi kartami také GeForce 8800 GT. Ta nejenže může představovat výkon (přetaktované) GeForce GT 240, ale hlavně také tvoří pojítko s minulými testy. S použitím tranzitivity a trochy fantazie si tak můžete odvodit, jak by třeba Radeon HD 6450 obstál proti Radeonu HD 4670 nebo třeba GeForce 9500 GT či dokonce Radeonu X1950 Pro. Stačí nalistovat starší testy v sekci Grafické karty, vždyť GeForce 8800 GT se tam objevuje ve spoustě testů už od listopadu 2007.

Společným bodem testovacích sestav byly tyto komponenty:

  • chladič: Noctua NH-C12P
  • paměti: 2× 2 GB DDR3-1600 Kingston HyperX LoVo (nastaveny na 1333-8-8-24-1T ve většině případů)
  • zdroj: Seasonic EnergyKnight (T3), 400 W
  • pevný disk: WD Caviar (WD3200AAKS), 320 GB
  • operační systém: Windows 7 Ultimate SP1, 64-bit

Intel HD Graphics 3000 (CPU Core i5-2500K) a Intel HD Graphics 2000 (Core i5-2300) používaly základní desku s čipsetem H67 (Cougar Point) přímo od Intelu. Společně s procesorem Core i5-2300 tato konfigurace platila také pro všechny diskrétní grafiky.

  • základní deska: Intel DH67BL

Intel HD Graphics na různých taktech (CPU Core i5-661, i3-530 a G6950) jsem pak testoval v základní desce s čipsetem H55 (Ibex Peak) od Gigabyte.

  • základní deska: Gigabyte GA-H55M-UD2H


H55M-UD2H je formátu micro ATX a problém není ani větší chladič (Scythe Kabuto) či vyšší paměti (HyperX T)

AMD 890GX čili Radeon HD 4290 jsem otestoval nejen na frekvenci 500 MHz (nastavení od MSI, v jiných deskách najdete třeba nastavení na 700 MHz), ale také na maximálním stabilním přetaktování (850 MHz). Tím doplňuji nedávný test desky 890GXM-G65 a vy uvidíte, že oněch 500 MHz je zvolených rozumně:

  • základní deska: MSI 890GXM-G65

Abychom mohli zkusit také výkon Radeonu HD 6310 v Zacate (AMD E-350), dodal nám Gigabyte základní desku s tímto APU. Ta naštěstí pracuje s plnými DDR3 DIMM i běžným zdrojem ATX.

  • základní deska: Gigabyte GA-E350N-USB3
  • chladič: součástí balení základní desky

Naprostou výjimkou byla potom konfigurace s Nvidia Ion 2. Její základ tvořila totiž základní deska Asus AT5IONT-Deluxe, což jsou vlastně taková střeva notebooku lehce upravená pro desktop. Na mini ITX desce najdete kromě pasivu také integrovaný Intel Atom D525 a čipset NM10. Deska bohužel počítá pouze se SO-DIMM, naštěstí byl v redakci po ruce zrovna jeden All-in-One od Asusu a v něm 2× 2 GB DDR3 v tomto provedení. Také zdroj je pro tuto desku stejný jako u notebooků: externí 65W. Jak uvidíte v kapitole o spotřebě, velká výhoda to zřejmě nebyla (buď je tato deska s Atomem D525 a Ionem 2 dost žravá, nebo je 65W adaptér při malých odběrech stejně neefektivní jako 400W Seasonic EnergyKnight – a to by bylo ostudnější snad ještě více).

  • základní deska: Asus AT5IONT-Deluxe
  • paměti: 2× 2 GB DDR3-1333 Samsung
  • zdroj: externí adaptér, 65 W
  • chladič: pasiv přímo na desce + Nanoxia FX12

Core i7-3770K jsem testoval v základní desce Gigabyte Z77X-UD5H. Jedná se určitě o vyšší střední třídu desek se silnou napájecí kaskádou pro stabilitu při přetaktování, takže jen těžko lze srovnávat příkon sestavy s Ivy Bridge třeba s příkonem až na desku a CPU stejné sestavy se Sandy Bridge. V případě SB (HD 3000 a 2000) bylo použito základní desky formátu microATX a pár fázemi, takže třeba příkon celého PC (bez monitoru) v idle se dá jen těžko srovnávat.

Všimněte si, že v grafech mám Intel HD 3000 dvakrát. Poprvé se jedná o měření v době, kdy byly CPU s tímto IGP ještě horkou novinkou, podruhé pak s čerstvými ovladači (viz Integrované grafiky Intel zrychlily díky ovladačům skoro o čtvrtinu). V grafech jsem nechal i starší výsledky, aby bylo vidět, o kolik by si asi s novými ovladači pomohla řešení jako HD 2000, či HD Graphics z Westmere.

Screenshotem z HWiNFO64 připomeňme, kdo hraje v tomto testu hlavní role. Všimněte si, že jsem pro testy grafické části vypnul HyperThreading (podporu osmi vláken na čtyřjádrovém procesoru), ve hrách to obyčejně dělá jen neplechu. Navíc takto můžete mít pocit, že jsem testovat třeba cenově dostupnější Core i5-3570K. Nebo ještě nižší model s HD 4000 – všechny zatím uvedené desktopové Ivy Bridge mají CPU natolik silná, že limitování GPU HD 4000 z jejich strany moc nehrozí. Zajímavější by to snad mohlo být jen u “low power” CPU s TDP 45 a méně W (TDP je totiž sdíleno pro CPU i GPU).

Poznámky k testům

Co se týče zvolených herních testů, primárním cílem jich bylo vyzkoušet hodně a odhalit tak případné slabiny ohledně širší kompatibility. Snažil jsem se také namíchat novější i starší hry. Jelikož průběh některých testů a co hůře třeba už i pohyb v menu hry na slabších kartách trvá věky, bez pokrytectví také přiznám, že jsem se snažil zařadit co nejvíce her, které se testují snadno a pokud možno bez průběžného zasahování (ideálně skriptem).

Nastavení jsem se snažil zvolit tak, aby to pokud možno alespoň nejrychlejší integrovaná grafika stíhala okolo těch 25 až 30 snímků za sekundu. Současně jsem ale nechtěl jít pod „koukatelné“ nastavení, takže výjimky se najdou. Typickým testovaným rozlišením bylo 1680 × 1050 px, jelikož to je už nějaký ten rok dostupné za velmi přijatelné ceny. K televiznímu Full HD (1920 × 1080 px) to současně není až tak daleko, takže dostanete také představu o tom, co by se asi tak stalo, kdybyste chtěli z té či oné integrované grafiky udělat nejen akcelerátor pro přehrání všemožných filmů, ale také třeba středobod herní (PC) konzole.

Interaktivní grafy 2.0

  1. Pokud se vám nelíbí písmo se stíny, velmi snadno je vypnete v Nastavení. Máte-li ještě problémy s rychlostí zobrazování, můžete v Nastavení povypínat také animace. 
  2. Pořadí testovaných produktů můžete snadno změnit zvolením řazení dle naměřené hodnoty v testu, podle různých skupin apod.
  3. Po najetí myší na některou z položek se z této stane 100 % (základ) a ostatní položky se spočítají podle ní. Všechny absolutní hodnoty se změní na relativní. Zpět se změní, až kurzor myši opustí oblast s názvy položek.
  4. Budete-li chtít nějakou položku v grafech sledovat, můžete si její pruh libovolně obarvit. Stačí klepnout levým tlačítkem myši na barevném pruhu a vybrat si z palety. Máte-li povoleny cookies, mělo by vám nastavení vydržet i pro další grafy v dalších kapitolách.
  5. Cenu a další základní parametry můžete zobrazit kdykoliv v každém grafu: stačí u vybraného procesoru najet kurzorem myši nad pruh s hodnotou (měření) a chvíli počkat. Objeví se jako plovoucí nápověda (tooltip).
  6. Zámek základu (produkt, který se stane těmi 100 % a od něhož se odvíjí další relativní hodnoty) aktivujete pomocí současného stisku klávesy CTRL a levého tlačítka myši nad produktem (či jeho pruhem v grafu), který chcete uzamknout.
  7. Před prvním použitím grafů si pro jistotu vyprázdněte cache prohlížeče (zřejmě bude stačit refresh) a v případě problému smažte i příslušné cookies.
  8. Interaktivní grafy 2.0 jsou kompatibilní s prohlížeči Firefox (testovány verze 4.x), Opera (testováno s 11.x), Internet Explorer 8 a 9 (verze 7 a starší už nejsou podporovány) a Chrome (zde mají tooltipy hranaté rohy namísto kulatých).
  9. V případě problémů se nejdříve ujistěte, že máte v prohlížeči povoleny skripty i cookies, dále splnění bodů 7 a 8, teprve potom nám chybu prosím co nejpřesněji reportujte. Jedná se o první ostré nasazení grafů, takže i přes delší testování autorem a redakcí při komplexnosti aplikace určitě ještě nějaké mouchy v nějaké kombinaci objevíte.

ArmA II (DX9), Call of Duty 4: Modern Warfare (DX9)

ArmA II

Při testování ve velmi náročné hře českého původu jsem využil integrovaného benchmarku. Detaily jsou nastaveny na celkový profil normální. Rozlišení výjimečně není 1680 × 1050 px, ale 1600 × 900 px (jediné společné pro grafiky Intel, AMD i Nvidia).

Call of Duty 4: Modern Warfare

Ačkoli se asi nejvíce zapsal druhý díl této série, tak i čtvrtý byl v multiplayeru hodně rozšířen. Nijak zvlášť náročnou hru jsem testoval s téměř všemi detaily na maximu, ale bez anti-aliasingu a AF.

Call of Juarez (DX10), Company of Heroes (DX9)

Call of Juarez

Test je prováděn pomocí volně stažitelného benchmarku. Ten je spíše demonstrací všech v době vydání nových technik umožněných či usnadněných díky DirectX 10. Bylo ponecháno nastavení normal, anti-aliasing vypnut.

Company of Heroes

Původně jsem chtěl použít nejnovější Company of Heroes: Tales of Valor (2.601), tato hra se ale na grafikách Intel ani pořádně nespustí (nepomůže spouštění s parametrem -dx9). Takže přišla na řadu starší verze a původní CoH. Všechny detaily jsem v této starší a nenáročné DX9 verzi nastavil naplno, jen anti-aliasing jsem vypnul.

Crysis (DX10), Devil May Cry 4 (DX10)

Crysis

Testoval jsem s celkovou úrovní detailů „Medium“a pomocí průletu na mapě Island (shodná sekvence je v GPUbenchmark.bat, já používám ale pro usnadnění Crysis Benchmark Tool), plnou verzí hry s nainstalovanou záplatou 1.2.1.

Devil May Cry 4

U Devil May Cry 4 jsem použil samostatný benchmark, konkrétně jeho DX10 verzi. Benchmark je dokončen ve výchozím nastavením, výsledkem je průměr ze čtyř částí.

U všech grafik Intel docházelo k nekorektnímu zobrazování ve druhé části benchmarku.

Enemy Territory: Quake Wars (OpenGL), Far Cry 2 (DX10.1)

Enemy Territory: Quake Wars

Nové Enemy Territory představuje jedinou současnou moderní OpenGL hru pod Windows a zároveň jediný OpenGL test v testovací sadě. Quake Wars používají značně upravený Doom 3 engine, obohacený především o technologii MegaTexture (více o technologii v článku na Beyond3D). Pro testy používám profil nastavení Normal, přes konzoli vypínám limit 30 (com_unlockFPS 1) i 60 fps (com_unlock_maxFPS 0, je vhodné nastavit do autoexec.cfg), AA i AF jsem nechal vypnuty.

Pro účely testování jsem si nahrál vlastní timedemo (recordtimenetdemo), které měří výkon v rozsáhlé lokaci se stromy (Valley). Timedemo (pro verzi 2.0) ke stažení: zde.

 

Far Cry 2

Pro testy jsem používal zabudovaný benchmark, test Ranch Small. Výsledky v grafech jsou z plynulejšího ze dvou opakování. Používám režim DirectX 10 a detaily Very High. Anti-aliasing byl vypnutý.

Více v článku Far Cry 2: výkon grafických karet a vliv nastavení.

 

F.E.A.R. (DX9), Left 4 Dead (DX9)

 

F.E.A.R.

Není legrace, když současný hardware trápí takto stará hra? A dokonce bez anti-aliasingu. Jinak mám všechny detaily nastaveny na maximální hodnoty a všechny obraz vylepšující funkce včetně měkkých stínů zapnuty. Testuji zabudovaným benchmarkem.

   

Left 4 Dead

Pro účely testování v Left 4 Dead jsem si vytvořil vlastní timedemo v první mapě první kampaně. Tu proběhnu skoro celou, intenzivním bojům se přitom spíše vyhýbám, abych testoval hlavně grafickou kartu. Všechny detaily jsou na nejvyšších hodnotách, filtrování je nastaveno Trilinear a anti-aliasing vypnut.

Timedemo v Left 4 Dead bohužel nebylo možné na žádné starší grafice od Intelu spustit (mluvím o HD Graphics z Clarkdale). Nepomohlo ani počkání na novou verzi ovladačů.

 

Mafia II (DX9), Resident Evil 5 (DX10)

 

Mafia II

Náročnou Mafii na těchto kartách testuji jen s celkovým nastavením Low, APEX PhysX je vypnuta.

Resident Evil 5

DX10 varianta benchmarku dává grafikám zabrat více než Devil May Cry 4. Nastavení ponecháno na výchozím, anti-aliasing i motion blur vypnuty.

 

Serious Sam 2 (DX9), Splinter Cell 3 (DX9)

 

Serious Sam 2

Starší DirectX 9 hra je s maximálními detaily, HDR a ve vyšším rozlišením stále dobrým testem grafických karet. Croteam enginy umí, i v Serious Sam 2 použil několik zajímavých technologií (třeba jako jeden z prvních využil kompresi ATI 3Dc). Pomocí zabudovaného benchmarku, který můžete ovládat skriptem, měřím výkon v demu Branchester.

Testovací skripty ke stažení: zde.

Splinter Cell: Chaos Theory

Splinter Cell: Chaos Theory byla jednou z prvních her, jež využívaly shader model 3.0. A to tak, že velmi dobře a ku prospěchu věci. V testované části lighthouse tvůrci několikrát pěkně použijí HDR s tone mappingem, parallax mapping i měkké stíny. Hra i přes své stáří stále velmi dobře škáluje grafické karty. Testovací skript ke stažení: zde.

Jelikož grafiky Intel (všechny bez výjimky) zobrazují jen HUD a jinak bílou plochu (za kterou je zřejmě normálně počítána scéna) a protože také poměr sil mezi Ionem 2 a G210 je v této hře jakýsi podezřelý, nepočítal jsem s ní do grafu celkového výkonu.

 

S.T.A.L.K.E.R.: Call of Pripyat (DX10) a Shadow Of Chernobyl (DX9)

 

S.T.A.L.K.E.R.: Call of Pripyat

Pro testování této moderními technologiemi nabité hry používám samostatný benchmark. Ten byl pro tuto třídu grafik nastaven na celkové detaily Medium a otestoval jsem jak Enh. full dyn lighting (DX10, výsledky v grafu), tak DX9 cestu.

S.T.A.L.K.E.R.: Shadow of Chernobyl

Engine Stalkeru, X-Ray engine, je zajímavý mimo jiné tím, že používá deferred shading umožňující velké množství dynamických zdrojů světla. Ve hře se setkáte s normálovým a paralaxním mapováním, měkkými stíny, FP HDR, dynamickými efekty počasí a mnoha postprocessingovými efekty. Ukrajinský tým už pracuje na pokračování na vylepšeném enginu (Clear Sky). Používám timedemo v Agroprom Research Institute, při běžném hraní jsou snímkové frekvence nižší.

Soubor s nastavením ke stažení: zde.

 

Oblivion (DX9), Trackmania Nations Forever (DX9)

 

The Elder Scrolls IV: Oblivion

Čtvrtý díl série Elder Scrolls patří i přes svůj věk stále mezi nejnáročnější hry vůbec. Zvlášť, když stejně jako já v testu, vyberete lokace s množstvím vlnící se trávy, pohupujících se stromů a přesto rozhledem do vzdálené krajiny (The West Weald). Testuji s výchozím nastavením detailů, navíc zapínám HDR. V souboru Oblivion.ini navíc vypínám vertikální synchronizaci (iPresentInterval=0).

Bohužel, ani v tomto případě grafiky Intel nezobrazují scénu při daném nastavení korektně, resp. platí podobný problém jako třeba u staršího Splinter Cell 3.

Trackmania Nations Forever

Trackmaniu hraje nejen ve světě, ale i v ČR obrovský počet hráčů, hra má navíc zabudovanou možnost benchmarku. Ten používám pro realistické a současně přesné měření i já. Použil jsem profil nastavení Vysoké (dost daleko od maximální), v poslední kapitole můžete najít i výsledky se středními detaily. 

Unreal Tournament 3 (DX9), World in Conflict (DX10), X3: Terran Conflict (DX9)

Unreal Tournament 3

Jelikož je na UE3 postavena spousta her jak na PC, tak na konzolích, je to doslova ideální hra pro vyzkoušení v takovémto testu. Před testováním musíte v UTEngine.ini vypnout vyhlazování snímkové frekvence (implicitně nastaveno na interval 22 až 62 fps) a to tak, že najdete bSmoothFrameRate=True a nastavíte na False (předtím odstraňte u souboru atribut Jen pro čtení). Testoval jsem pomocí flyby.

Nastavení hry ke stažení: zde.

World in Conflict

Testuji s upraveným profilem medium (zapnul jsem navíc DX10 rendering, jinak nic). Používám vestavěný benchmark.

X3: Terran Conflict

Samostatný benchmark byl spuštěn s nejvyššími detaily (detaily textur: High), osminásobným AF a vypnutým anti-aliasingem. 

 

Příkon (spotřeba), shrnutí herního výkonu, verdikt

Průměrný výkon napříč hrami

Dvacet herních testů jsem nakonec shrnul v jediném grafu, 100 % v každé dílčí hře tvořila nejvýkonnější integrovaná grafika současnosti – Radeon HD 7660D z A10-5800K. Vzhledem k tomu, že všechny testy jsou limitovány grafikou, výkon slabšího CPU (např. Core i3-3225) s Intel HD 4000 bude prakticky totožný. 

Spotřeba (příkon)

Zejména tuto třídu karet ale nelze hodnotit pouze podle výkonu. Velkou roli hraje i nutný příkon, díky němu lze počítat se zdrojem s nízkým výkonem a hlavně není potřeba dimenzovat chlazení na velké odpadní teplo. Nejdříve tedy klidový stav ve Windows 7 (pro detaily celých sestav se prosím vraťte do druhé kapitoly článku).

A následně nejvyšší hodnoty během druhého spuštění benchmarku World in Conflict (kde je zapojena jak grafická karta, tak docela i vícejádrový procesor).

Přehrávání HD videa

DXVA Checker potvrzuje, že HD Graphics umí akcelerovat hlavní formáty videa a některé už i ve 2160p.

Core i3-3220 detekce

Core i3-3220 detekce Core i3-3220 detekce Core i3-3220 detekce 

Verdikt

V průměru dosahuje Intel HD 2500 zhruba 57 % výkonu HD 4000. To je sice trochu lepší, než jak by to mohlo podle počtu prováděcích jednotek vypadat, pořád to ale můžeme považovat za výkon, který odradí všechny zájemce o nějaké hraní.

Kromě už zmíněného příplatku asi 300 Kč na CPU s mnohem silnější HD 4000 je tu především konkurence. CPU výkon Trinity (v A10) už není tak špatný, takže jakmile bude integrovaná grafika využívána, volí už uživatel jen mezi nižším příkonem v zátěži (Intel Core i3) a právě mnohem lepší integrovanou grafikou (AMD A10).

Jestliže mluvím o tom, že HD 2500 zájemce o hraní určitě odradí, tak si vytáhnu na pomoc článek Diablo III na starém PC: na co upgradovat? V něm jste mohli vidět, že HD 4000 zvládne i Diablo III s vysokými detaily (a odřenýma ošima), s HD 2500 byste se i v této poměrně nenáročné hře museli hodně uskromnit jak na rozlišení, tak především na detailech.

 

Core i3-3220 zkrátka láká hlavně jako vynikající CPU, integrovaná grafika je zajímavá jen pro ty, kdo se hraní 3D her víceméně vyhýbají. Pro 2D (desktop, HD video) vám bude i HD 2500 stačit.

Intel Core i3-3220
Intel Core i3-3220

Intel HD 2500 (Core i3-3220)

+ akcelerace HD videa
+ funkce zahrnující podporu DirectX 11
+ nízký příkon
– výkonnostní ztráta na HD 4000 je příliš velká
– horší kompatibilita s hrami a kvalita vykreslování než u konkurence

 

Za zapůjčení procesorů Intel Core i3-3220 děkujeme obchodu Alfa.cz
Ohodnoťte tento článek!